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Error Analysis and Graphs 
Review material taken from the introduction to Experiment 1 in the PHYS 200 Lab Guide 

The goal of physics is to understand the world around us, and discover the laws of nature. 

Therefore, any theory (no matter how fancy or attractive it might be) is actually useless, unless it 

is supported by experimental evidence. Doing an experiment usually involves making 

quantitative measurements.  However, in order for the measured values (or data) to be 

meaningful it is very important to understand the limitations of the instruments used and also 

recognize the possible sources of error. 

Significant Figures and Measurement Uncertainty 

Assume that you wanted to find the area and volume of your physics textbook. To do this, of 

course, you needed its dimensions (length, width and thickness). Using a ruler, you first 

measured the length of the textbook. Since the smallest division on the ruler is the millimeter you 

could only give an upper limit (26.3 cm) and a lower limit (26.1 cm) for the length. Due to the 

limitations of the instrument (the ruler in this case) you could then only say that the correct 

length (L) of the textbook, most probably, lies between these two values. This is written as 

( 26.2 0.1 cmL = ± ), where the first number is called the measured value of L and the second 

number is the called uncertainty (or error) in the measurement. Similarly, you measured the 

width (W) and thickness (T) of the textbook to be ( 20.6 0.1 cmW = ± ) and ( 3.9 0.1 cmT = ± ) 

respectively. In these measurements, the first digit after the decimal point is uncertain, making it 

meaningless (or insignificant) to include any digits beyond that. The digits in a measured value, 

up to and including the first uncertain digit, are called significant figures. So, there are 3 

significant figures in L and W and 2 significant figures in T. Note that we cannot write the length 

as 26 20 cmL .= , since it will then include two uncertain digits. 

In counting the number of significant figures, in a measurement, we start from the first non-zero 

digit and end by the first uncertain digit. If the uncertainty of a measurement is known, then it 

becomes easy to specify the uncertain digit and count the number of significant figures. 

However, if the uncertainty of a measured value is not known, then we have to be careful. If 

there is no decimal point in the number, then the last non-zero digit is considered to be the first 

uncertain digit. If the number contains a decimal point then the last digit after the decimal 

Table 1.1 

Measured Value Scientific Notation Number of 

Significant Figures 

9.80 9.80 3 

120 2102.1 ×  2 

2120 ±  210)02.020.1( ×±  3 

120.0 210200.1 ×  4 

1.00560 1.00560 6 

0.00560 31060.5 −
×  3 

910375 −
×  71075.3 −

×  3 
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(whether or not it is a zero) is assumed uncertain. This ambiguity in the number of significant 

figures is avoided by using the scientific notation, in which only one digit is kept to the left of the 

decimal point, while the remaining digits, up to an including the uncertain one, are moved to the 

right. Of course, we have to multiply by an appropriate exponent. See Table 1.1 for examples. 

Limit Errors 

Knowledge of measurement errors and how they combine is very important in understanding 

how much we can trust an experimental result. There are two major types of measuring error, 

random and systematic. For example, the error in the exercise above where you had trouble 

reading the ruler to better than 1 mm, is a random error. If, on the other hand, you were using a 

ruler marked in tenths of an inch and you thought it was in mm, that would give a systematic 

error of scale. 

Going back to your exercise, the surface area (A) of the textbook is calculated using the equation 

( WLA ×= ). If you plug the measured values of length and width into the calculator you will get 
2539.72 cmA = . However, are all these digits significant? How many significant figures are 

there in A, and what is its uncertainty? As a general rule for combining numbers by 

multiplication or division the final result should not have more significant figures than the 

original value with the least number of significant figures. For addition and subtraction, 

however, the final result should not have more decimal places than the original value with the 

least number of decimal places. In this case since both L and W have three significant figures, A 

should be rounded off to 3 significant figures, and should be written as 2540 cmA =  (or 
22 cm1040.5 × ). Similarly, the volume of the textbook is written as 32100 cmV = cm

3
 (or 

33 cm101.2 × ), which should not contain more than two significant figures. 

What about the uncertainties of A and V? Since the area and the volume of the textbook are 

calculated from the measured dimensions, the errors in A and V are propagation of the errors of 

L, W and H. Table 1.2, lists the rules used to calculate the propagated errors in various arithmetic 

operations. Notice that, whether we are adding or subtracting numbers, the combined error 

simply adds up. Similarly, we use the same rule for combining error whether the operation is 

multiplication or division. Notice that in the last rule, k is an exact constant factor that does not 

have uncertainty (i.e. 0=∆k ). 

For example, the uncertainty of the textbook area is given by 

20.1 0.1
| | 540 4.7 cm

26.2 20.6

L W
A A

L W

∆ ∆   
∆ = + = + =   

   
, 

which can be rounded to 25 cmA∆ = , because it is not an actual measurement. So, we see that 

the third digit in A is uncertain indicating that the number of significant figures in A is indeed 3. 

The final answer is then written as 22 cm10)05.040.5( ×±=A . Similarly the volume of the 

textbook is written as 33 cm10)1.01.2( ×±=V . It is often useful to speak of the relative error 

/x x∆  to compare the size of error to the size of the value measured. Another advantage is that 
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the 

relative error of a product or dividend is just the sum of the relative errors of what make them up. 

Example: Derive a formula for the uncertainty in the volume of a cylinder with radius r and 

height h? 

Solution: The volume (v) of the cylinder is given by hrv
2

π= . Using the rules in Table 1.2, the 

uncertainty in v is given by 
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Table 1.2 

Relation Equation Limit error 

Addition z x y= +  yxz ∆+∆=∆  

Subtraction yxz −=  z x y∆ = ∆ + ∆  

Multiplication yxz =  







 ∆
+

∆
=∆

||||
||

y

y

x

x
zz  

Division yxz /=  








 ∆
+

∆
=∆

||||
||

y

y

x

x
zz  

Power n
xz =  xxnz

n
∆=∆

−1  

Exact constant factor xkz =  xkz ∆=∆  
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Figure 1.1 

 

The Linear Graph 

Many scientific studies involve finding how one quantity is related to another. One way to 

explore relationships is to collect and analyze experimental data. In a typical experiment, the 

value of the first quantity (called the independent variable) is varied, and the value of the second 

quantity (called the dependent variable) is measured. The result is two sets of values 

corresponding to both variables. For example, assume 

that you wanted to monitor the growth of your favourite 

indoor plant, which you got as a birthday gift from your 

mom. So, over a period of three days you recorded the 

plant’s height every 12 hours as shown in Table 1.3. 

Since the measurements were made using a regular ruler, 

you estimated the error in the plant’s height to be about 1 

mm. 

 

Table 1.3 

Elapsed time 

x (day) 

Plant’s height 

1.0±y (cm) 

0.5 39.6 

1.0 39.9 

1.5 40.3 

2.0 40.7 

2.5 40.9 

3.0 41.3 
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It is very convenient to display tabulated data in a graph form. The independent variable is 

usually (but not necessarily) plotted on the horizontal axis while the vertical axis is reserved for 

the dependent variable. In Figure 1.1, the circled dots represent the x and y values in Table 1.3. 

The vertical bars on each data point show the range of error in each measurement. You may 

notice that the y value goes up with the x value to make a graph that is almost a straight line. This 

indicates that the linear function bmxy += will likely represent the data well. Finding the best 

straight line, that represents the relation between x and y, is called the linear fit to the data. The 

parameter m in this equation is called the slope of the line, and it represents the rate at which y 

increases with x. The other parameter b is called the y-intercept, and represents the value of y 

when 0=x .  

To find the slope of the linear graph, we need first to mark two points on the straight line and 

write down their x and y coordinates. Note that these coordinates should be read directly from the 

linear graph and not from the data table. If the first point has the coordinates ),( 11 yx  and second 

points has the coordinates ),( 22 yx , then we can calculate the change in y (rise = 12 yy − ) caused 

by the change in x (run = 12 xx − ). The slope is then calculated as the ratio of rise over run such 

that 

12

12

run

rise

xx

yy
m

−

−
== . 

In Figure 1.1, the slope is calculated to be cm/day7.0=m , which is a relatively high growth 

rate! 

The y-intercept (b) corresponds to the point at which the linear graph intersects the y-axis (i.e. 

when 0=x ). In Figure 1.1, cm2.39=b , which represents the height of the plant 12 hours 

before you took the first measurement. The best linear fit to the data in Table 1.3 is then given by 

the equation 0.7 39.2y x= + . 

For additional readings you may refer to Section 1-4 and Appendix A-3 in the textbook. 


